// ThinkPad-LPCB
DefinitionBlock ("", "SSDT", 2, "OCLT", "BATC", 0)
{
External(\_SB.PCI0.LPCB.EC, DeviceObj)
Scope(\_SB.PCI0.LPCB.EC)
{
External(BAT0._HID, IntObj)
External(BAT0._STA, MethodObj)
External(BAT0._BIF, MethodObj)
External(BAT0._BST, MethodObj)
External(BAT1, DeviceObj)
External(BAT1._HID, IntObj)
External(BAT1._STA, MethodObj)
External(BAT1._BIF, MethodObj)
External(BAT1._BST, MethodObj)
Device(BATC)
{
Name(_HID, EisaId ("PNP0C0A"))
Name(_UID, 0x02)
Method(_INI)
{
// disable original battery objects by setting invalid _HID
^^BAT0._HID = 0
^^BAT1._HID = 0
}
Method(CVWA, 3)
// Convert mW to mA (or mWh to mAh)
// Arg0 is mW or mWh (or mA/mAh in the case Arg2==0)
// Arg1 is mV (usually design voltage)
// Arg2 is whether conversion is needed (non-zero for convert)
// return is mA or mAh
{
If (Arg2)
{
Arg0 = (Arg0 * 1000) / Arg1
}
Return(Arg0)
}
Method(_STA)
{
// call original _STA for BAT0 and BAT1
// result is bitwise OR between them
If (_OSI ("Darwin"))
{
Return(^^BAT0._STA() | ^^BAT1._STA())
}
Else
{
Return (0)
}
}
Name(B0CO, 0x00) // BAT0 0/1 needs conversion to mAh
Name(B1CO, 0x00) // BAT1 0/1 needs conversion to mAh
Name(B0DV, 0x00) // BAT0 design voltage
Name(B1DV, 0x00) // BAT1 design voltage
Method(_BST)
{
// Local0 BAT0._BST
// Local1 BAT1._BST
// Local2 BAT0._STA
// Local3 BAT1._STA
// Local4/Local5 scratch
// gather battery data from BAT0
Local0 = ^^BAT0._BST()
Local2 = ^^BAT0._STA()
If (0x1f == Local2)
{
// check for invalid remaining capacity
Local4 = DerefOf(Local0[2])
If (!Local4 || Ones == Local4) { Local2 = 0; }
}
// gather battery data from BAT1
Local1 = ^^BAT1._BST()
Local3 = ^^BAT1._STA()
If (0x1f == Local3)
{
// check for invalid remaining capacity
Local4 = DerefOf(Local1[2])
If (!Local4 || Ones == Local4) { Local3 = 0; }
}
// find primary and secondary battery
If (0x1f != Local2 && 0x1f == Local3)
{
// make primary use BAT1 data
Local0 = Local1 // BAT1._BST result
Local2 = Local3 // BAT1._STA result
Local3 = 0 // no secondary battery
}
// combine batteries into Local0 result if possible
If (0x1f == Local2 && 0x1f == Local3)
{
// _BST 0 - Battery State - if one battery is charging, then charging, else discharging
Local4 = DerefOf(Local0[0])
Local5 = DerefOf(Local1[0])
If (Local4 == 2 || Local5 == 2)
{
// 2 = charging
Local0[0] = 2
}
ElseIf (Local4 == 1 || Local5 == 1)
{
// 1 = discharging
Local0[0] = 1
}
ElseIf (Local4 == 5 || Local5 == 5)
{
// critical and discharging
Local0[0] = 5
}
ElseIf (Local4 == 4 || Local5 == 4)
{
// critical
Local0[0] = 4
}
// if none of the above, just leave as BAT0 is
// Note: Following code depends on _BIF being called before _BST to set B0CO and B1CO
// _BST 1 - Battery Present Rate - Add BAT0 and BAT1 values
Local0[1] = CVWA(DerefOf(Local0[1]), B0DV, B0CO) + CVWA(DerefOf(Local1[1]), B1DV, B1CO)
// _BST 2 - Battery Remaining Capacity - Add BAT0 and BAT1 values
Local0[2] = CVWA(DerefOf(Local0[2]), B0DV, B0CO) + CVWA(DerefOf(Local1[2]), B1DV, B1CO)
// _BST 3 - Battery Present Voltage - Average BAT0 and BAT1 values
Local0[3] = (DerefOf(Local0[3]) + DerefOf(Local1[3])) / 2
}
Return(Local0)
} // _BST
Method(_BIF)
{
// Local0 BAT0._BIF
// Local1 BAT1._BIF
// Local2 BAT0._STA
// Local3 BAT1._STA
// Local4/Local5 scratch
// gather and validate data from BAT0
Local0 = ^^BAT0._BIF()
Local2 = ^^BAT0._STA()
If (0x1f == Local2)
{
// check for invalid design capacity
Local4 = DerefOf(Local0[1])
If (!Local4 || Ones == Local4) { Local2 = 0; }
// check for invalid max capacity
Local4 = DerefOf(Local0[2])
If (!Local4 || Ones == Local4) { Local2 = 0; }
// check for invalid design voltage
Local4 = DerefOf(Local0[4])
If (!Local4 || Ones == Local4) { Local2 = 0; }
}
// gather and validate data from BAT1
Local1 = ^^BAT1._BIF()
Local3 = ^^BAT1._STA()
If (0x1f == Local3)
{
// check for invalid design capacity
Local4 = DerefOf(Local1[1])
If (!Local4 || Ones == Local4) { Local3 = 0; }
// check for invalid max capacity
Local4 = DerefOf(Local1[2])
If (!Local4 || Ones == Local4) { Local3 = 0; }
// check for invalid design voltage
Local4 = DerefOf(Local1[4])
If (!Local4 || Ones == Local4) { Local3 = 0; }
}
// find primary and secondary battery
If (0x1f != Local2 && 0x1f == Local3)
{
// make primary use BAT1 data
Local0 = Local1 // BAT1._BIF result
Local2 = Local3 // BAT1._STA result
Local3 = 0 // no secondary battery
}
// combine batteries into Local0 result if possible
If (0x1f == Local2 && 0x1f == Local3)
{
// _BIF 0 - Power Unit - 0 = mWh | 1 = mAh
// set B0CO/B1CO if convertion to amps needed
B0CO = !DerefOf(Local0[0])
B1CO = !DerefOf(Local1[0])
// set _BIF[0] = 1 => mAh
Local0[0] = 1
// _BIF 4 - Design Voltage - store value for each Battery in mV
B0DV = DerefOf(Local0[4]) // cache BAT0 voltage
B1DV = DerefOf(Local1[4]) // cache BAT1 voltage
// _BIF 1 - Design Capacity - add BAT0 and BAT1 values
Local0[1] = CVWA(DerefOf(Local0[1]), B0DV, B0CO) + CVWA(DerefOf(Local1[1]), B1DV, B1CO)
// _BIF 2 - Last Full Charge Capacity - add BAT0 and BAT1 values
Local0[2] = CVWA(DerefOf(Local0[2]), B0DV, B0CO) + CVWA(DerefOf(Local1[2]), B1DV, B1CO)
// _BIF 3 - Battery Technology - leave BAT0 value
// _BIF 4 - Design Voltage - average BAT0 and BAT1 values
Local0[4] = (B0DV + B1DV) / 2
// _BIF 5 - Design Capacity Warning - add BAT0 and BAT1 values
Local0[5] = CVWA(DerefOf(Local0[5]), B0DV, B0CO) + CVWA(DerefOf(Local1[5]), B1DV, B1CO)
// _BIF 6 - Design Capacity of Low - add BAT0 and BAT1 values
Local0[6] = CVWA(DerefOf(Local0[6]), B0DV, B0CO) + CVWA(DerefOf(Local1[6]), B1DV, B1CO)
// _BIF 7+ - Leave BAT0 values for now
}
Return(Local0)
} // _BIF
} // BATC
} // Scope(...)
}
// EOF